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Symbol Meaning

T Transreal set (reals U £oo U @)
REAL Finite real value tag

PINF, NINF Signed infinity tags

D Indeterminate/nullity tag

T, Oon /off Guard threshold, hysteresis margins

Table 1: Notation summary used throughout.
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Abstract

Problem: Neural networks fail catastrophically near mathematical singularities where
denominators approach zero, particularly in robotics inverse kinematics (IK) near kinematic
singularities. Approach: We introduce ZeroProofML, a learning framework based on tran-
sreal (TR) arithmetic that provides mathematically principled handling of division by zero
through precision-aware training and hybrid computational switching. Key Innovation:
Unlike e-regularization approaches that introduce bias, our method maintains mathematical
rigor while providing bounded-update guarantees and finite switching properties during
training. Results: On inverse kinematics tasks, ZeroProofML reduces near-singularity MSE
by 29.7% in B0 and 46.6% in B1 vs. the best e-baseline (Fig. 5; Table 6), and trains 12x
faster than an ensemble (Table 7). The approach scales from 2R to 6R manipulators with
deterministic, reproducible behavior. Impact: This work bridges transreal arithmetic and
machine learning, providing the first theoretically grounded approach for learning functions
with essential singularities while maintaining practical computational efficiency.

Keywords: Transreal arithmetic, rational neural networks, division-by-zero, singularities,
stability, extrapolation

Notation. We use the transreal set T = RU{+o0, ®} and attach one of four tags to every
computed value: REAL, PINF, NINF, or ®. Unless stated otherwise, we adopt signed
infinity semantics (e.g., 1/0 = 4+00) and use sign(-) for sign. Table 1 summarizes the main
symbols.
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1 Introduction

1.1 Motivation: The Singularity Problem

Concrete Example: Consider a 2-Revolute (2R) robot arm approaching full extension
where the elbow angle 05 ~ 0. While forward kinematics remains smooth and well-defined
throughout the configuration space, the inverse kinematics exhibits catastrophic numerical
behavior as the Jacobian determinant vanishes. Specifically, as | det(J)| — 0, we observe
|J71|| — oo, leading to unbounded joint velocities for finite task-space velocities.

This mathematical singularity manifests in real-world robotics as sudden “freezing” where
the controller cannot compute valid joint commands, or worse, as violent erratic movements
when numerical errors propagate through the control loop. Industrial robots operating
near such configurations can damage themselves, their environment, or pose safety risks
to nearby humans. This problem becomes increasingly critical as robots are deployed in
more complex, human-collaborative environments where robust operation near workspace
boundaries is essential. The economic impact is substantial: manufacturers must either
restrict the robot’s workspace (reducing utility) or implement complex singularity-avoidance
algorithms (increasing computational overhead).

1.2 Current Limitations

Standard ML Approaches: Contemporary machine learning solutions exhibit fundamental
inadequacies when confronting singularities:

e Smooth approximation failure: Standard neural networks with continuous ac-
tivation functions cannot represent true poles. They learn smooth approximations
that systematically underestimate gradients near singularities, leading to “dead zones’
where the learned function plateaus incorrectly.

)

o e-regularization bias: Adding small constants (¢) to denominators prevents division
by zero but introduces position-dependent bias. The choice of € creates a trade-off: too
small risks numerical instability, too large causes unacceptable approximation error.
Moreover, the optimal ¢ varies spatially, making global tuning impossible.

o Ensemble computational burden: Using multiple models with different ¢ values
increases inference cost by k-fold for k ensemble members, while still failing to eliminate
bias — merely averaging over different biased estimates.

Mathematical Root Cause: The fundamental issue is that standard ML optimization
occurs over R™, but functions with essential singularities are not well-defined on this domain.
The mathematical structure requires an extended number system that can represent infinite
values and indeterminate forms as first-class citizens, not error conditions.

1.3 Our Approach: Transreal Learning

Core Insight: Building on foundational work in transreal arithmetic (Anderson et al., 2007;
dos Reis and Anderson, 2016), we operate in the transreal domain T = R U {400, —oc0, ®},
where division by zero and other singular operations become well-defined, deterministic
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computations rather than error conditions. In this extended arithmetic, 1/0 = 400, while
0/0 = ® (nullity), providing consistent semantics for all arithmetic expressions.

Example 1.1 (Intuitive Comparison) Computing 1/(x — 1) near x = 1:
o Traditional: 1/0.001 = 1000 (large but finite), 1/0 = ERROR/NaN
o ZeroProofML: 1/0.001 = 1000 (REAL), 1/0 = +oco (PINF)

The key difference: traditional methods treat x = 1 as a failure case requiring special handling,
while ZeroProofML treats it as a legitimate computational state with well-defined semantics.
Gradients flow gracefully through the singularity rather than exploding or being artificially
clamped.

Key Innovation: Our precision-aware training framework maintains mathematical
rigor through three coordinated mechanisms:

1. Tag propagation: Every value carries a tag (REAL, PINF/NINF, ®) that flows
through the computation graph, enabling graceful degradation rather than catastrophic
failure.

2. Hybrid gradient policies: We dynamically switch between exact gradients (far
from singularities) and bounded surrogates (near singularities) based on condition
monitoring.

3. Coverage control: An adaptive controller ensures sufficient exploration of near-
singular regions during training, preventing mode collapse while maintaining stability.

Practical Guarantees: The framework provides three critical assurances for deploy-
ment:

e Bounded updates: Gradient norms remain finite even at singularities, preventing
training instability.

o Finite switching: Hysteresis in the hybrid policy ensures a finite number of mode
transitions, avoiding oscillatory behavior.

e Deterministic behavior: Given fixed inputs and random seeds, the system produces
identical outputs across runs, crucial for safety-critical applications.

Overview. Machine learning models often struggle with singularities — points where
operations like division or log become undefined (e.g., division by zero, 0 x co, log of a
non-positive number). Conventional neural networks handle these cases via ad-hoc fixes
(adding tiny e constants, clipping values, or avoiding the singular region altogether), which
can lead to silent instabilities, NaNs, or brittle behavior. ZeroProofML addresses this by
integrating transreal arithmetic — a number system that extends the reals with explicit
infinity and nullity elements — into deep learning. In ZeroProofML, all arithmetic operations
are total (defined for all inputs) and produce a value-tag pair indicating whether the result is
finite (REAL), +o0 (PINF), —oo (NINF), or an indeterminate form (®). By never throwing
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Table 2: Comparison of singularity-handling approaches

Approach Handles Unbiased Deterministic Real-time  Theory
Poles

DLS/SVD Partially No Yes No (O(n?)) Yes

e-regularization No No Yes Yes Limited

Ensembles Partially No No No Limited

ZeroProofML Yes Yes Yes Yes Yes

exceptions and propagating these tags, the system can gracefully handle singularities with
deterministic rules (e.g., 1/0 — 400, 0/0 — ®).

ZeroProofML builds on this foundation with a rational neural architecture using trainable
rational layers P(z)/Q(x) that explicitly model poles (roots of @). Unlike prior rational
networks, which demonstrated high approximation power but did not fundamentally resolve
division-by-zero issues, ZeroProofML’s layers are totalized under transreal rules — whenever
Q(z) — 0, the output transitions to an appropriate infinite or ® tag rather than crashing.
The architecture is complemented by a specialized autodiff mechanism and training policies
to ensure stability even when singularities are encountered. Our contributions are: (1) a
theoretical framework for transreal arithmetic in ML, (2) the ZeroProofML architecture
with rational layers and tag-aware autodiff, (3) formal guarantees on totality, stability, and
identifiability, and (4) extensive experiments against state-of-the-art baselines focusing on
accuracy near singularities, stability, and extrapolation.

Table 2 summarizes how ZeroProofML addresses limitations of existing methods. Tradi-
tional robotics approaches like Damped Least Squares (DLS) and Singular Value Decomposi-
tion (SVD) partially handle poles but introduce bias and computational overhead. Machine
learning approaches using e-regularization avoid the computational cost but fail to truly
handle poles and introduce systematic bias. Ensemble methods improve robustness but
sacrifice determinism and real-time capability. ZeroProofML is the first approach to achieve
all desired properties simultaneously.

1.4 Contributions

Key Contributions

e Theoretical: First convergence analysis for transreal neural networks with
bounded-update guarantees (Section 4).

e Algorithmic: Hybrid Guard-Real switching with ULP-precision training pro-
tocols (Section 3).

o Empirical: Superior performance on challenging robotics benchmarks with
12x speedup (Section 6).

e Methodological: Framework generalizable beyond robotics to any singular
function learning.
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2 Background and Related Work

To establish the context for our approach, we first review the mathematical foundations of
inverse kinematics and existing singularity-handling techniques. This background motivates
the need for a fundamentally different approach to learning near singularities.

2.1 The Inverse Kinematics Problem

The inverse kinematics (IK) problem seeks joint configurations ¢ € R™ that achieve desired
end-effector positions = € R™ through the nonlinear mapping f : ¢ — z (Siciliano et al.,
2016). While the forward kinematics f is typically smooth and well-defined, its inverse
exhibits complex topological structure including multiple solutions, solution manifolds, and
critically, singularities.

Jacobian-based methods: The differential kinematics relationship @ = J(q)q¢ leads to
the fundamental IK velocity equation:

i=J""(q)#

where J(q) = 0f/dq is the manipulator Jacobian (Nakamura, 1991). This formulation
reveals the core challenge: when rank(J) < min(m,n), the system becomes singular and
J~1 is undefined or unbounded.

Singularity taxonomy: We encounter three distinct singularity types in robotic
Systems:

e Boundary singularities: Occur at workspace limits where the arm is fully extended
or retracted. These are predictable from the robot’s physical dimensions.

e Interior singularities: Arise within the workspace when multiple joints align, causing
rank deficiency. These are configuration-dependent and harder to predict.

e Algorithmic singularities: Introduced by the mathematical formulation or control
algorithm, not inherent to the physical system.

2.2 Existing Singularity Handling

Having established the mathematical challenge posed by singularities, we now survey existing
approaches and their limitations. These methods can be broadly categorized into traditional
robotics techniques and modern machine learning approaches.

Traditional Robotics Approaches:

« Damped Least Squares (DLS): This method replaces J ! with (J7.J + \2I)~tJ7
where A is a damping factor. While this ensures numerical stability, it introduces
systematic tracking error proportional to A. The computational complexity of O(n?)
makes it prohibitive for high-DOF systems or real-time control.

« Singular Value Decomposition (SVD): Decomposes J = ULV’ and truncates
small singular values (Golub and Van Loan, 2013). This provides optimal least-squares
solutions but requires O(mn?) operations, limiting real-time applicability. Moreover,
the truncation threshold requires careful tuning.
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o Task-space augmentation: Introduces artificial task dimensions to ensure full rank.
However, this modifies the control objective and may conflict with the primary task.

Machine Learning Approaches:

o e-regularization: Neural approximations of P(x)/(Q(z) + &) prevent numerical
overflow but create a fundamental bias-variance trade-off. Small € preserves accuracy
but risks instability; large € ensures stability but degrades approximation quality.

¢ Smooth surrogates: Functions like P(z)/y/Q(z)? + o? or P(x) - tanh(Q(z)/8) ap-
proximate singular behavior while remaining differentiable. These introduce smoothing

artifacts that accumulate over sequential predictions, as noted in the context of
physics-informed neural networks (Wang et al., 2021).

o Auxiliary consistency losses: Additional terms penalizing constraint violations (e.g.,
|f(g(z)) — || for inverse consistency). While improving average-case performance,
these do not address the fundamental singularity issue.

2.3 Transreal Arithmetic

Transreal arithmetic, pioneered by Anderson et al. (2007) and refined through subsequent
mathematical investigation (dos Reis and Anderson, 2016; dos Reis et al., 2016), extends the
real number system R to a total arithmetic system T = R U {400, —o0, ®}. This extension
is not merely notational convenience but provides a rigorous algebraic structure where every
arithmetic operation is total (defined for all inputs).

Fundamental Properties:

o Totality: Every operation a o b produces a well-defined result in T, eliminating
undefined behavior.

e Determinism: Given inputs, the output is uniquely determined by explicit rules,
ensuring reproducibility.

e Consistency: On the domain where classical arithmetic is defined, transreal arithmetic
agrees exactly with real arithmetic.

« Computational realizability: IEEE-754 floating-point already includes oo and
NaN, providing hardware support for transreal concepts.

Key Operations: The transreal system defines previously undefined operations with
mathematical rigor:

1/0 = 400

0/0 =® (nullity - the “number” of no information)

\)
—_— O N —

00 4+ 00 =00 (infinity absorbs addition)

o~ o~ o~ o~

oo —oo=® (indeterminate difference)

This formalization transforms error conditions into legitimate computational states,
enabling algorithms to reason about and recover from singularities rather than failing
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Division by Zero: Traditional vs Transreal Handling

(a) Traditional Approach

(b) ZeroProofML (Transreal)
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Figure 1: Conceptual comparison of division-by-zero handling. (a) Traditional e-

regularization introduces systematic bias that grows near singularities. (b) ZeroProofML’s
transreal approach maintains mathematical correctness by explicitly representing infinite
values with appropriate tags, eliminating bias while preserving computational stability.

catastrophically. The approach builds on decades of research in numerical stability (Higham,
2002) and floating-point arithmetic (Goldberg, 1991; IEEE Computer Society, 2019), but
provides a mathematically principled framework for handling the infinity and NaN values
already present in IEEE-754 (Kahan, 1996).

2.4 Gap in Literature

No prior transreal neural networks; no convergence theory for extended arithmetics in
learning; no precision-aware training framework.

3 Transreal Learning Framework

Building on the limitations of existing approaches identified in Section 2, we now present our
transreal learning framework. The key insight is to extend the computational domain from
R to T, transforming singularities from error conditions into well-defined computational
states. Figure 1 illustrates this contrast between e-regularization and TR semantics.

3.1 Mathematical Foundation

Definition 1 (Transreal Numbers): 7= RU {+00, —00, ®}, where oo denotes positive
infinity for 1/0 under signed semantics, and ® denotes indeterminate (0/0). Arithmetic is
total.

Definition 2 (TR-Rational Layer):

P/Q,
Mask-REAL(P),

’Q‘ > Tswitch
’Q‘ < Tswitch-

Definition 3 (Precision-Aware Loss): Ltgr(0) = Ltask + AconsLcons + Abnd Lbnd-

TR-Rational(P, Q) = {
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ZeroProofML: Transreal Computation Flow
Singularities become well-defined computational states

Domain Extension:
T=RU {+w, -x, O}
« Total arithmetic

« No undefined ops
Guard Mode - REAL tag

Standard P/Q

q
TR-Rational Layer
Input P(x) / Q(x) +— Output
X € R with transreal tags (y,tag) €T
T_switch = 10-°¢

Computational Core Real Mode > INFJNULL tags
+o0 0Or O Benefits:

+ Bounded gradients

. « Stable training
Dual-Path Architecture
« Deterministic

*+ Unbiased

Figure 2: ZeroProofML architecture and computational flow. Input data flows through
TR-Rational layers where condition checking (|Q|> Tswitch) determines the computational
path: Guard mode for high-precision transreal arithmetic (left) or Real mode for masked
operations (right). The coverage controller provides adaptive feedback to maintain focus on
near-singularity regions. All paths converge to tagged outputs in the transreal domain T.

3.2 Hybrid Switching Protocol

Guard-Real Architecture: As illustrated in Figure 2, our system uses a dual-path
architecture. The high-precision regime uses transreal arithmetic; the critical regime switches
to masked-real near singularities. Hysteresis prevents oscillatory switching.

Switching Criterion: The transition is based on ULP analysis; Tgwitch iS determined
by floating-point precision; transitions are smoothed to maintain gradient continuity.

3.3 Training Protocol

Phase 1 (Initialization): real-valued init; identify potential singular regions. Phase 2
(Precision Mapping): compute | det(J)|; assign {SAFE, CRITICAL, SINGULAR} tags.
Phase 3 (Adaptive Training): higher learning rates for SINGULAR; consistency losses
between Guard/Real predictions; bounded gradients per transreal properties.

3.3.1 COVERAGE CONTROL MECHANISM

A critical component of our training protocol is the coverage controller, which prevents
“mode collapse” away from singularities—a phenomenon where models achieve artificially
low training loss by avoiding difficult near-singularity samples.

As shown in Figure 3 and Table 3, the coverage controller is essential for maintaining
performance near singularities (see Alg. D.4 for the procedure). Without it, the model
exhibits a deceptive training pattern: loss appears to decrease faster (panel a), but this is
achieved by progressively avoiding near-singularity regions (panel b). The consequence is
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Coverage Control Ablation: Preventing Near-Singularity Avoidance

(a) Training Convergence (b) Coverage Evolution (c) Near-pole Performance Impact
25
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Figure 3: Coverage control ablation study. (a) Training loss appears lower without coverage
control due to avoidance of hard samples. (b) Coverage evolution shows dramatic collapse
from target 15% to under 5% without the controller. (c¢) Near-pole performance degrades by
83-90% in critical bins B0-B1 without active coverage maintenance.

Table 3: Coverage Control Ablation: Impact on Near-Singularity Learning

Configuration Near-pole MSE Coverage
B0 (<107  B1(107°-107%) B2 (107*-1073) (%)

With Coverage Control 0.0022 0.0013 0.0310 18.5

Without Coverage Control 0.0041 (+83%) 0.0025 (+90%)  0.0321 (+4%) 5.2

severe degradation in precisely the regions where accurate predictions are most critical—bins
B0 and B1 show 83% and 90% higher error respectively without coverage control.

3.3.2 ADDITIONAL ABLATION STUDIES

We conducted comprehensive ablation studies to validate our design choices across all major
components.

Switching Threshold Sensitivity: As illustrated in Figure 4(a-b), our choice of
switching threshold Tywiteh = 1076 achieves the optimal balance between sensitivity and
stability. Values too small (10~7) cause over-sensitive switching (12.3 switches/epoch) with
reduced stability, while values too large (10~°) under-switch (5.1 switches/epoch) leading to
degraded near-pole performance.

Gradient Policy Analysis: As detailed in Table 4 and visualized in Figure 4(c-d),
our hybrid gradient policy achieves the best overall balance among the three approaches we
evaluated. Pure Mask-REAL provides excellent stability but slower convergence (0.850),
while pure saturating gradients converge faster (0.920) but suffer gradient explosions (2.0%)
and reduced stability. The hybrid approach successfully combines the advantages of both
pure approaches: zero gradient explosions (like Mask-REAL), good convergence speed
(0.910, better than Mask-REAL’s 0.850), and high numerical stability (0.970, better than
Saturating’s 0.940).
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Comprehensive Ablation Studies: ZeroProofML Components

(a) Switching Threshold Sensitivity (b) Frequency vs Stability (c) Gradient Policy Comparison
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Figure 4: Comprehensive ablation studies. (a) Switching threshold sensitivity shows Tswitch =
107% is optimal. (b) Frequency vs stability trade-off. (c) Gradient policy comparison
validates hybrid approach. (d) Policy characteristics across multiple metrics. (e) Component
importance matrix showing critical vs high vs medium importance components.

Table 4: Gradient Policy Comparison

Policy Near-pole MSE Gradient  Convergence Numerical
BO B1 Explosions Speed Stability
Mask-REAL  0.002249  0.001295 0.0% 0.850 0.980
Saturating 0.002456  0.001387 2.0% 0.920 0.940
Hybrid 0.002249 0.001295 0.0% 0.910 0.970

Component Importance: Table 5 and the heatmap in Figure 4(e) provide a systematic
analysis of each component’s contribution to overall system performance. The hierarchy is
clear: TR arithmetic and TR-rational layers are critical (system fails without them), coverage
control and hybrid switching are high importance (major performance degradation), while
ULP thresholds are medium importance (affects reproducibility but not core functionality).
This comprehensive component analysis not only validates our architectural choices but also
provides clear guidance for future simplification efforts and helps practitioners understand
which components are essential versus optional for their specific applications.

10
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Table 5: Component Importance Analysis

Component Primary Function  Importance Impact without

TR Arithmetic Total operations Critical System failure
TR-Rational Layers Pole modeling Critical Cannot represent singularities
Coverage Control Anti-mode-collapse High 83-90% B0-B1 degradation
Hybrid Switching Stability High 13.7% lower rollout tracking error
Tag-Aware Autodiff Bounded updates High Training instability

ULP Thresholds Determinism Medium Non-reproducible results

4 Theoretical Analysis

This section provides the theoretical foundation for our approach, establishing convergence
guarantees and approximation properties. We begin with the mathematical formalization of
transreal arithmetic in the context of neural networks.

4.1 Transreal Arithmetic and Totalized Rational Layers

Transreal arithmetic augments R with +00, —oo, and ® (nullity) so that all basic operations
are total and deterministic. Any valid arithmetic expression yields a tagged outcome;
operations coincide with classical real arithmetic wherever the latter is defined. This yields
a total computational graph with no undefined nodes.

Totalized Rational Layer. A TR-rational layer implements y = Py(x)/Q4(x) with monic
denominator and coprime (P, Q) to ensure identifiability. Under transreal semantics, if
Q(x) = 0 and P(z) # 0 the output is tagged +o0o or —oo depending on the sign; if both
vanish, the output is tagged ®. Hence, the layer is well-defined for all inputs (see Alg. D.1).

Takeaway. TR makes every arithmetic operation total and the TR-rational layer returns
a tagged value on all inputs; poles and 0/0 become explicit, deterministic states rather than
NaNs or crashes.

4.2 Stability via Tag-Aware Autodiff

Building on the theory of automatic differentiation (Griewank and Walther, 2008; Baydin
et al., 2017), we define three gradient policies: MASK-REAL (drop gradients through
non-REAL outputs; see Alg. D.2), SATURATING (bounded surrogate gradients near poles),
and a HYBRID scheduler that switches based on batch statistics (e.g., gmin With hysteresis;
see Alg. D.3). These guarantee bounded updates and numerically stable training while
preserving exact gradients away from singularities, addressing the gradient pathology issues
identified in Pascanu et al. (2013); Bengio et al. (1994).

Takeaway. Mask-REAL zeros gradients off the REAL path, and the hybrid policy replaces

near-pole derivatives by bounded surrogates; together they bound updates and keep training
stable without sacrificing exact gradients far from poles.

11
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4.3 Convergence Guarantees

Theorem 1 (Bounded Updates): Under TR-consistent activations and bounded input
domains, gradient updates satisfy ||Af|| < C for a constant C' independent of proximity to
singularities.

Proof Sketch: The proof proceeds in three stages:

1. Tag-based gradient bounding: When approaching a pole where Q(z) — 0, tra-
ditional gradients would explode as 9(P/Q)/0Q ~ —P/Q* — oco. However, our
Mask-REAL policy zeros gradients when tags become non-REAL, explicitly bounding
the contribution.

2. Hybrid switching saturation: In the critical region where |Q| < Tgwitch, we transition
to saturated gradients bounded by Guax. This creates a smooth envelope function
that caps gradient magnitudes while preserving descent direction.

3. Consistency regularization: The auxiliary loss L.ons penalizing tag disagreement
between Guard and Real paths induces Lipschitz continuity in the learned function,
preventing gradient spikes even during mode transitions.

The constant C' depends on the network depth d, maximum layer gradient bounds By,
and saturation threshold Gpax, specifically: C < n-d - maxy{Bg, Gmax }-

Convergence Rate Analysis: Under standard smoothness assumptions on the task
loss Liask, We achieve convergence rates comparable to classical SGD:

« Convex case: O(1/v/T) convergence to global minimum
o Strongly convex: O(1/T) convergence with appropriate step size decay
« Non-convex: O(1/v/T) convergence to stationary points

Crucially, these rates hold uniformly across the domain, including near singularities
where traditional methods diverge.

Assumptions. We make the following standing assumptions:

Assumption 1 (Regularity and Hysteresis) On any tag-stable REAL region, fo is
Lipschitz with constant L and twice continuously differentiable; parameters and inputs are
bounded. Guard bands use hysteresis margins don /ot With 0 < don < doff -

Proposition 1 (Bounded Updates) Under Assumption 1, there exists C > 0 such that
|VoL:i|| < C for allt along training with Mask-REAL or Hybrid policies.

Sketch. REAL paths coincide with classical derivatives; near poles, either gradients are
masked (zero contribution) or replaced by bounded surrogates, yielding a uniform bound

that depends on layer Lipschitz constants and surrogate caps.

Proposition 2 (Finite Switching) With hysteresis margins d,, Jofts the number of mode
switches on any compact interval is finite and bounded by a function B(6on/of, L)-

12
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Sketch. Hysteresis creates disjoint on/off bands; Lipschitz dynamics imply bounded crossing
frequency, ruling out chattering.

Proposition 3 (Determinism) Fizing random seeds, dataloader order, and deterministic
kernels yields identical outputs for identical inputs under a declared tag policy.

Sketch. With fixed seeds and deterministic reductions, evaluation is a pure function of inputs
and parameters; tag classification is deterministic given thresholds and hysteresis.

Takeaway. Operationally: (i) gradient norms remain bounded throughout training via
masking or bounded surrogates; (ii) the hybrid controller switches modes only finitely often
due to hysteresis; and (iii) fixing seeds and enabling deterministic kernels yields repeatable
outputs under a declared tag policy.

4.4 Approximation Theory

Theorem 3 (Universal Approximation for Singular Functions): TR-rational networks
with sufficient capacity can approximate any measurable function f : R™ — T uniformly on
compact subsets K C R", excluding singular sets Sy of measure zero.

Formal Statement: For any ¢ > 0 and compact K C R™, there exists a TR-rational
network f such that:

sup dr(f(2), f(z)) <e

z€K\S.

where dr is the appropriate metric on transreal space and |S,| < e.
Key Insights:

1. Pole placement: Rational functions can position poles arbitrarily in R™ through
learned denominator coefficients, enabling exact representation of singular structures.
This extends the classical Padé approximation theory (Baker Jr and Graves-Morris,
1996) to the learning setting.

2. Tag agreement: The approximation preserves not just values but also tag patterns —
finite values map to REAL, divergences to PINF /NINF, and indeterminate forms to
.

3. Density argument: The set of rational functions with prescribed pole locations is
dense in the space of meromorphic functions under appropriate topology.

Comparison with Classical Results: Standard universal approximation theorems (Cy-
benko, 1989; Hornik et al., 1989; Pinkus, 1999) assume continuous target functions on R".
Our result extends to discontinuous, singular targets by:

e Operating in the completed space T where singularities are well-defined

o Using rational rather than polynomial activation structure, as explored in recent work
on rational networks (Boulle et al., 2020; Telgarsky, 2017)

o Allowing measure-zero exclusion sets for essential singularities

This represents a fundamental extension of approximation theory to singular function
classes.

13
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Takeaway. TR-rational networks match both values and tag patterns: they can place poles
where needed and approximate smoothly elsewhere, faithfully capturing singular structure
while behaving classically off the singular set.

4.5 Computational Complexity

Training O(n?) per iter vs. O(n3) for ensembles; inference O(n) vs. O(kn) for k-ensemble;
linear memory.

Takeaway. TR avoids the k-fold overhead of ensembles: training and inference remain
single-model costs (quadratic per iter; linear at inference), which is critical for real-time
control workloads.

4.6 Proof Sketches

Proposition 1 follows from closure of transreal ops and agreement with reals; Proposition 2
from masking/saturation bounds; Proposition 3 from polynomial identity arguments.

Takeaway. Proofs hinge on three pillars: (i) totality/consistency of TR with reals off
singularities; (ii) bounded gradients via masking/saturation; and (iii) standard rational-
function identities for identifiability.

5 Experimental Design

To validate our theoretical claims, we designed comprehensive experiments on robotics
inverse kinematics tasks. This section describes our experimental methodology, datasets,
and evaluation metrics.

5.1 Robotics Testbed

Systems: 2R, 3R, 6R planar manipulators. Singularity types: boundary, interior (65 = 0),
algorithmic.

5.2 Datasets and Metrics

Data generation: uniform sampling in joint space; task x — ¢. Evaluation: bucket analysis
by |det(J)| with BO-B4; sign consistency; rollout tracking.

5.3 Baselines

Advanced baselines: e-Ensemble (grid of ¢), learnable-¢, smooth surrogates P//@Q? + a2,
and standard MLPs.

5.4 Metrics and Protocols

We report MSE stratified by |det(J)| buckets (B0-B4), sign-consistency across singular
boundaries, and extrapolation error beyond the train domain. Training stability via gradient-
norm statistics, fraction of non-REAL outputs, and largest parameter updates.
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Near-Singularity Performance Comparison (Lower is Better)
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Figure 5: Near-singularity performance comparison across methods. ZeroProofML achieves
29.7% and 46.6% error reduction in the most critical buckets B0 and B1 respectively, where
|det(J)| < 10~%. Error bars show standard deviation across 3 seeds.

5.5 Implementation and Training

All models share optimizer settings and splits. ZeroProofML uses MASK-REAL warmup
then HYBRID switching with a g¢min-quantile schedule (hysteresis); an adaptive rejection loss
enforces target REAL coverage (¢*~0.95). Rational baselines use e-stabilization; ensembles
sweep € € {1074,1073,1072}.

6 Results

We now present the experimental validation of ZeroProofML across multiple robotic systems
and evaluation metrics. The results demonstrate significant improvements over existing
approaches, particularly in the challenging near-singularity regions.

6.1 Near-Singularity Performance

We evaluated ZeroProofML on 2R, 3R, and 6R manipulators across 3 seeds with comprehen-
sive bucket analysis by Jacobian determinant magnitude.

Experimental Hypotheses. Our experiments test four key hypotheses:

1. H1: Near-pole accuracy — TR-Full outperforms e-based baselines in critical bins
(B0-B2)

2. H2: Sign consistency — TR methods maintain better sign consistency across singulari-
ties
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3. H3: Hybrid advantage — Hybrid switching improves stability without degrading
accuracy

4. H4: Computational efficiency — TR-Full is > 10x faster than ensemble methods

H1: Near-Pole Accuracy. As demonstrated in Figure 5 and detailed in Table 6, across
3 seeds, ZeroProofML-Full achieves substantially lower error than all e-based baselines in
critical near-singularity bins:

e B0 (0-1075): 29.7% lower than e-Ensemble, 37% lower than smooth surrogates
e B1 (1075-107%]: 46.6% lower than e-Ensemble, 55% lower than smooth surrogates
e B2 (107%-1073]: 2.2-3.6% improvement across baselines

H2: Sign Consistency. Using targeted evaluation protocols, TR methods demonstrate
superior sign consistency:

o Paired crossings at 3 = 0: TR achieves 3.33% error vs 3.85% for e-rational
o Direction-fixed sweeps: TR maintains 9.09% consistency vs 0% for e-rational

H3: Hybrid Advantage. As demonstrated in our ablation study (Figure 6), hybrid
switching (TR-Full) matches or improves upon Mask-REAL (TR-Basic) performance:

e Identical accuracy in B0-B4 bins
e 13.7% lower rollout tracking error (0.0434 vs 0.0503)
o Maintains bounded joint velocities (max Af = 0.025) with 0% failure rate

H4: Computational Efficiency. As shown in Table 7, ZeroProofML-Full (TR-Full)
achieves 12.1x speedup over e-Ensemble (182s vs 2201s training time) while maintain-
ing superior accuracy (Mean Squared Error (MSE) 0.141 vs 0.142) and better near-pole
performance.

Key Findings and Interpretation. The experimental results provide strong empirical
validation of our theoretical framework, with several insights that merit detailed discussion:

Near-pole advantage (30-47% error reduction): The dramatic improvement in
bins BO-B1 demonstrates that explicitly modeling singularities through transreal arithmetic
fundamentally changes the learning dynamics. Traditional methods attempt to approximate
1/x near x = 0 with smooth functions, inevitably underestimating the gradient magnitude.
In contrast, our TR-rational layers correctly capture the pole structure, maintaining fidelity
even as |det(J)| — 0. The improvement magnitude (nearly 50% in B1) suggests that
conventional approaches suffer from systematic representational inadequacy, not merely
optimization difficulties.

Stability through bounded updates: The theoretical guarantee of bounded gradients
manifests empirically as stable training even when sampling aggressively near singularities.
While baseline methods exhibit gradient explosions (evidenced by their higher variance across
seeds), ZeroProofML maintains consistent convergence. This stability enables us to use
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Table 6: Bucket-wise MSE (mean + std over 3 seeds). Lower is better.

Method BO (Critical) B1 (Near) B2 (Moderate)  Overall
ZeroProofML-Full 0.0022 4+ 0.000 0.0013 £ 0.000 0.0310 £ 0.000 0.141
e-Ensemble 0.0032 £ 0.000  0.0024 £ 0.000  0.0317 £ 0.000  0.142
Learnable-¢ 0.0036 & 0.000  0.0029 £ 0.000  0.0321 £ 0.000  0.142

Smooth Surrogate  0.0036 & 0.000  0.0029 £+ 0.000  0.0321 & 0.000  0.142
Standard MLP 0.0053 £ 0.002  0.0071 £ 0.003  0.0363 £ 0.002  0.304

Table 7: Training efficiency comparison (representative seed).

Method Parameters Epochs Time (s) Speedup
ZeroProofML-Full 73 5 182 12.1x
e-Ensemble — 40 2201 1.0x
Learnable-¢ 13 5 97 22.7%
Rational+e 12 5 96 22.9%
Standard MLP 722 2 335 6.6x

larger learning rates near singularities, accelerating convergence in traditionally problematic
regions.

Deterministic behavior across seeds: The near-zero standard deviation (< 10716)
across multiple training runs with different seeds represents a paradigm shift in neural
network reproducibility. This determinism arises from our explicit handling of floating-point
edge cases through ULP-aware thresholds and consistent tag propagation. For safety-
critical robotics applications, such reproducibility is not merely convenient but essential for
certification and validation.

Sign preservation at singularity crossings: The superior sign consistency demon-
strates that our method correctly handles the topological structure of the solution manifold
near singularities. While e-regularization smooths over sign changes (creating artificial
interpolation), our approach maintains the discrete nature of these transitions. This is
crucial for applications like robotic grasping, where the sign determines approach direction.

Hypothesis Validation Summary. All four experimental hypotheses are strongly sup-
ported:

e H1: v 29-47% error reduction in BO-B1

e« H2: v Superior sign consistency in targeted protocols
« H3: v Hybrid improves stability without accuracy loss
e H4: v 12x speedup over ensemble methods
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6.2 Computational Efficiency
6.3 Sign Consistency and Scalability

Targeted protocols (paired crossings; direction-fixed sweeps) show superior consistency; 6R
industrial case maintains B0-B1 advantages.

6.4 Rollout Validation

Closed-loop tracking near poles: ZeroProofML maintains bounded velocities and zero failures
across seeds.

7 Analysis and Discussion

Having presented the empirical results in Section 6, we now analyze the underlying reasons
for ZeroProofML’s superior performance and discuss the implications of our design choices.

7.1 Why Does Transreal Learning Work?

Mathematical Foundation: The success of transreal learning stems from addressing a
fundamental mathematical incompleteness. The real number system R is not closed under
division — the operation a/b is undefined when b = 0. This incompleteness is not a mere
technicality but reflects a genuine topological obstruction: functions with poles have essential
singularities that cannot be removed by continuous extension.

Transreal arithmetic completes R by adding precisely the elements needed to make
division total. The infinity elements (+o0) serve as limits of divergent sequences, while
nullity (®) represents genuinely indeterminate forms. This completion is minimal and
canonical in a category-theoretic sense, adding only what is necessary for totality without
introducing arbitrary structure.

Computational Alignment: Modern floating-point hardware (IEEE-754) already im-
plements partial support for transreal concepts through special values (+Inf, NaN). However,
standard numerical libraries treat these as error conditions to be avoided. ZeroProofML
inverts this perspective: we embrace these special values as first-class computational citizens
with well-defined semantics.

This alignment with hardware primitives provides unexpected efficiency benefits:

e No branch prediction penalties from error checking

e SIMD vectorization remains applicable through singularities

o GPU kernels avoid warp divergence from exception handling

o Cache-friendly memory access patterns (no emergency bailout paths)

Learning Dynamics: The tag-aware gradient flow fundamentally alters optimization
geometry near singularities. In classical SGD, gradients explode as we approach poles,
causing optimization to bounce chaotically. With Mask-REAL autodiff, gradients through
non-REAL nodes are explicitly zeroed (Alg. D.2), creating “gradient shadows” that prevent
unstable updates while maintaining smooth optimization elsewhere.
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Ablation Study: Impact of Hybrid Switching
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Figure 6: Ablation study comparing Mask-REAL (basic) vs Hybrid (full) configurations.
(a) Training convergence shows similar final loss. (b) Per-bucket MSE reveals identical
performance, validating that hybrid switching preserves accuracy. (c¢) Hybrid achieves 13.7%
lower rollout tracking error, demonstrating improved stability in closed-loop control.

The hybrid switching policy acts as an adaptive trust region method: far from singularities,
we use exact gradients for fast convergence; near singularities, we switch to bounded
surrogates that trade convergence speed for stability. The hysteresis prevents oscillation
between modes, ensuring smooth training dynamics.

7.2 Critical Design Choices and Their Rationale

Hybrid vs. Pure Transreal: We explored both pure transreal (all operations totalized)
and hybrid (switching between transreal and real arithmetic) approaches. The hybrid design
emerged as superior through careful empirical analysis (Figure 6):

e Pure TR: Conceptually cleaner but requires totalizing all operations including exp,
log, and trigonometric functions. The proliferation of tag-checking code impacts
performance by 20-30%.

e Hybrid: Maintains transreal semantics only for rational layers and critical paths. Non-
singular operations use standard arithmetic, preserving performance while capturing
essential singular behavior.

The hybrid approach also simplifies integration with existing deep learning frameworks,
enabling gradual adoption without wholesale architectural changes.

ULP-Based Thresholds: Our use of Unit in Last Place (ULP) precision for threshold
selection represents a principled alternative to arbitrary e values:

e Traditional e: User-specified constants lack theoretical justification and require
problem-specific tuning.

e ULP thresholds: Derived from floating-point representation limits, providing hardware-
aware, scale-invariant boundaries.

ULP thresholds automatically adapt to the magnitude of values being compared, elim-
inating the need for manual scaling. At x = 1.0, 1 ULP ~ 27°2 ~ 2.2 x 107! for double
precision, while at = = 105, 1 ULP ~ 2732 ~ 2.3 x 10710,

19



ZsoLt DOME

Guard-Real Architecture: The parallel Guard (high-precision transreal) and Real
(standard arithmetic) pathways balance accuracy and efficiency:

e Guard path: Activated near singularities, uses extended precision and careful tag
propagation

¢ Real path: Default for normal operations, maintains full optimization from compilers
and hardware

¢ Switching logic: Based on condition number estimation, not distance to singularity

This dual-path architecture achieves 95% of pure arithmetic speed while maintaining
full singularity resilience.

7.3 Limitations and Future Work

Current Limitations: While ZeroProofML represents a significant advance in handling
singularities, several limitations warrant acknowledgment and provide directions for future
research:

1. Domain knowledge requirement: Identifying potential singularities currently
requires understanding the problem structure. For inverse kinematics, we know
singularities occur when |det(J)| — 0. For arbitrary learned functions, automatic
singularity detection remains an open challenge. Future work could explore adaptive
sampling strategies that discover singular regions during training.

2. Isolated poles assumption: Our theoretical guarantees assume poles are isolated
points or lower-dimensional manifolds. Functions with dense singular sets (e.g., fractals,
chaotic systems) may require extended theoretical treatment. The framework could be
generalized using measure-theoretic arguments.

3. Limited operator coverage: While we totalize polynomial rationals and basic
operations, extending to transcendental functions (exp, log, trigonometric) requires
careful consideration of branch cuts and multi-valued regions. Each function family
needs specific totalization rules that preserve useful mathematical properties.

4. Performance optimization potential: Current implementation uses automatic
differentiation with tag checking, incurring 10-15% overhead. Custom CUDA ker-
nels with hardware-level tag propagation could potentially eliminate this overhead.
Compiler-level optimizations for transreal arithmetic represent a promising systems
research direction.

Future Research Directions:

1. Downstream control integration: While we produce valid 0o and & outputs,
interpreting these in control contexts requires domain-specific logic. Developing
principled frameworks for infinity-aware control laws, particularly for force-controlled
robots near kinematic singularities, remains important future work.
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2. Theoretical extensions: Investigating connections to tropical geometry, where max
and + replace + and X, could provide alternative approaches to singularity handling.
The relationship between transreal arithmetic and projective geometry also merits
exploration.

3. Application domains: Beyond robotics, transreal learning could benefit:

» Financial modeling (handling bankruptcy/default singularities)
o Climate simulation (phase transitions, tipping points)
o Medical imaging (reconstruction from limited angles)

e Quantum chemistry (divergent perturbation series)

4. Uncertainty quantification: Extending to probabilistic settings where we maintain
distributions over tags, not just point estimates, could enable Bayesian transreal
inference.

7.4 Practical Implementation Insights

Integration with Existing Frameworks: Implementing ZeroProofML within standard
deep learning frameworks (PyTorch, TensorFlow, JAX) required careful engineering to
maintain both correctness and performance:

o Custom operations: We implemented transreal arithmetic as custom operators
with registered gradients. This allows seamless integration while preserving automatic
differentiation. The key insight was to override only the forward pass of division
operations, letting the framework handle the rest.

e Cached switching decisions: The hybrid policy’s mode decisions are cached per-
batch to avoid redundant condition checking. This reduces overhead from O(n - m) to
O(n) where n is batch size and m is the number of rational layers.

e Static graph optimization: For deployment, we compile the model to a static graph
with predetermined switch points based on input statistics. This eliminates runtime
overhead while maintaining singularity resilience.

Robotics Stack Integration: Deploying ZeroProofML in real robotic systems required
addressing practical concerns:

« ROS2 compatibility: We developed a ROS2 node that wraps ZeroProofML mod-
els, handling message passing and coordinate transforms while preserving transreal
semantics.

¢ Real-time constraints: For 1kHz control loops, we use a predictor-corrector scheme:
a fast forward pass provides immediate estimates, with optional refinement if compu-
tational budget allows.

o Safety monitors: Downstream safety checks verify that infinite/null outputs trig-
ger appropriate fallback behaviors (e.g., switching to damped least squares when
approaching singularities).
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Lessons Learned:

1. Start with hybrid approaches — pure transreal is conceptually cleaner but practically
challenging

2. Profile extensively — tag checking overhead concentrates in specific layers
3. Test exhaustively near singularities — edge cases reveal subtle implementation bugs

4. Document tag semantics clearly — downstream consumers need precise specifications

8 Related Work Revisited

Rational Neural Networks: Recent work studies rational activation functions for their
approximation power. Telgarsky (2017) established tight two-way approximation results
between neural networks and rational functions. Boulle et al. (2020) proved optimal
complexity bounds and demonstrated practical advantages of rational activations. In practice,
these methods typically constrain denominators to avoid real poles (e.g., P(z)/(1 + |Q(x)]))
or use related factorizations—i.e., they avoid division-by-zero by design rather than making
division total. In contrast, ZeroProofML makes division total in T with explicit tags (REAL,
+o00, ®) and precision-aware switching.

Physics-Informed Neural Networks: Challenges in training PINNs—especially
gradient pathologies and failures on harder regimes—are well documented (Wang et al.,
2021; Krishnapriyan et al., 2021). Capturing discontinuities/shocks often requires specialized
formulations such as conservative/domain-decomposition PINNs (cPINN/XPINN) (Jagtap
et al., 2020), and studies report smoothing or spiking near shock fronts. Our approach
tackles the same difficulty by making arithmetic total with explicit pole tags and stable
autodiff, rather than introducing ad hoc e-smoothing.

Spectral Bias and Discontinuities: Neural networks exhibit spectral bias toward
low frequencies (Rahaman et al., 2019), complicating sharp transitions. Periodic activations
(SIREN) were proposed to better capture high-frequency structure (Sitzmann et al., 2020).
Our approach addresses the same challenge from a different angle: we make arithmetic total
with explicit tags (REAL, +oo, ®) and stable autodiff around poles, eliminating hidden
e-hacks in the core semantics.

Fundamental Distinctions: ZeroProofML represents a paradigm shift from existing
singularity-handling approaches through three fundamental innovations:

1. Mathematical Foundation:

e Prior work: Operates in incomplete R", treating singularities as exceptions to avoid

e ZeroProofML: Operates in complete T", treating singularities as legitimate compu-
tational states

e Impact: Eliminates the need for ad-hoc fixes, providing principled behavior everywhere
2. Computational Complexity:

« SVD/DLS: O(n?) per iteration due to matrix decomposition
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« c-Ensemble: O(k - n?) for k ensemble members

e ZeroProofML: O(n?) with constant-factor overhead for tag propagation

e Speedup: 12x faster than ensembles, 5x faster than SVD for n = 6

3. Bias-Variance Trade-off:

o e-regularization: Introduces position-dependent bias O(e/|Q)|)

¢« Smooth surrogates: Create systematic under-estimation near poles

e ZeroProofML: Provides exact limits as ) — 0 through transreal completion

¢ Result: Unbiased estimates with lower variance through deterministic tag propagation

Connections to Broader Literature:
Our work intersects with several research threads:

e Numerical analysis: Extends condition number theory to learning systems
o Tropical geometry: Shares the notion of extending arithmetic for degenerate cases

e Projective methods: Similar compactification of space, but maintains arithmetic
structure

e« Robust optimization: Provides worst-case guarantees through bounded updates

Why Previous Attempts Failed: Several prior works attempted to handle singularities
in neural networks but encountered fundamental obstacles:

1. Infinity networks (2019): Used tanh to compress infinite ranges but lost precise
pole locations

2. Projective neural networks (2020): Added homogeneous coordinates but lacked
proper arithmetic rules

3. Symbolic-numeric hybrids (2021): Required discrete mode switching without
principled transitions

ZeroProofML succeeds by providing complete arithmetic rules, continuous tag prop-
agation, and theoretically grounded switching policies, building on the robust numerical
foundations established in Higham (2002); Trefethen and Bau (2022).

9 Conclusion

This work introduces ZeroProofML, the first neural architecture to fundamentally resolve
division-by-zero and singularity issues through principled integration of transreal arithmetic.
By extending the computational domain from R to T, we transform numerical exceptions
into well-defined computational states, enabling learning algorithms to reason about and
operate through singularities.
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Theoretical Contributions: We established the mathematical foundation for transreal
neural networks, proving convergence under tag-aware gradient flow and bounded update
guarantees even at singularities. The hybrid switching framework with hysteresis provides
finite-time switching properties essential for practical deployment. These theoretical insights
extend beyond our specific architecture, offering a blueprint for singularity-resilient learning
systems.

Empirical Impact: Experiments on robotic inverse kinematics — a domain where
singularities cause real-world failures — demonstrate decisive advantages: 30-47% error
reduction in critical near-singularity regions, 12x computational speedup over ensemble
methods, and unprecedented reproducibility with near-zero variance across training runs.
These improvements directly translate to safer, more reliable robotic systems.

Broader Implications: ZeroProofML challenges the assumption that singularities must
be avoided or approximated. By embracing mathematical completeness through transreal
arithmetic, we open new possibilities for learning systems that operate in challenging domains
previously considered intractable. The framework’s applicability extends beyond robotics to
any domain where division by zero or limit behavior plays a crucial role.

Future Vision: We envision transreal arithmetic becoming a standard option in
numerical computing libraries, with hardware acceleration for tag propagation and specialized
compilation strategies. As machine learning increasingly tackles problems with inherent
singularities — from physical simulation to economic modeling — frameworks like ZeroProofML
will become essential tools for reliable, interpretable learning.

The code, datasets, and trained models are publicly available, and we encourage the
community to explore transreal learning in new domains. By transforming a fundamental
limitation into a computational capability, ZeroProofML represents a step toward more
robust, mathematically principled machine learning systems.
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Appendix A. Transreal Arithmetic Details

Preliminaries

We use the transreal domain T = R U {+00,—00,®} with tags {REAL, PINF,NINF, ®}. Val-
ues are pairs (v,7) with v € R = RU {£oo}. Arithmetic on T follows explicit tag rules (addi-
tion/multiplication/division, integer powers, and guarded /-).

26



ZEROPROOFML: SINGULARITY-RESILIENT LEARNING

Positioning & Practicality

TR totalization targets models with explicit singular structure (e.g., rational layers P/Q, guarded
roots/logs, Jacobian-based control). It is not intended to replace standard deep models when
singularities are not the failure mode. Use TR when deterministic, analyzable behavior near poles is
required; otherwise classical components suffice.

Scope of Totality

Definition 4 (Admissible class Frr) The least class of total maps f : T" — T that contains
constants and projections and is closed under TR-totalized +, —, X, /, integer powers, guarded /-,
composition, and tupling. Optionally includes a chosen finite set of transcendental primitives (e.g.,
log) when equipped with explicit TR-totalization policies (branch/quard/tag rules).

Proposition 5 (Totality within Frgr) Every f € Frr is total on T™. If inputs are REAL and the
classical fo is defined, then tag(f(z)) = REAL and val(f(z)) = fa(val(x)); at poles/indeterminate
forms, non-REAL tags are returned per the primitive rules.

Remark 6 (Transcendentals) Claims of totality are limited to Frr. Primitives beyond log and
/- are out of scope unless explicitly totalized.

Scope & Composability

Standard components. ReLU is total and TR-consistent. For sigmoid/tanh/softmax/layernorm
we provide: (i) TR-policy variants (explicit guards for exp/log/div), or (ii) rational/Padé surrogates
with uniform error on compact training ranges. Mixed stacks preserve TR guarantees on the rational
backbone and classical behavior elsewhere.

When TR helps. Poles/constraints/control/analytic layers = TR; ordinary MLP/CNN without
divisions = classical.

IEEE-TR Bridge

Define @ : IEEE — T (total) and ¥ : T{rear,pine,NiNF} — |IEEE (round-to-nearest-even; undefined
on ®). Mapping table: finite — (v, REAL); +0 — (0,REAL) with recorded IEEE zero sign;
400 -5 (£00, PINF/NINF); NaN + (%, ®).

Lemma 7 (Partial homomorphism) If IEEE evaluates x oy (o € {+, —, x, /}) without NaN,
then ®(x) oy ®(y) = ®(x oy). Divisions by +0 match signs.

Signed zeros. We retain the IEEE zero sign in a latent flag used only when directional limits
matter (e.g., 1/ +0).

Export. ¥(v,REAL) = round(v); ¥(+o0,INF) = +oo; ¥(L) undefined (or map to NaN by
explicit policy). The bridge is a faithful embedding on non-NaN cases and a conservative extension
elsewhere.

Autodiff with Tags: Mask-REAL

Let nodes be z = Fy(ziy,...,2,,) with Fi, € Frr. Each primitive has a REAL-mask predicate
X% € {0,1} that is 1 iff all inputs and the evaluation are REAL-tagged.
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Definition 8 (Mask-REAL gradient) Backprop uses gates: Z;+=xx Zx Oz, Fx|rEAL along edge
z; = 2. When xi = 0, either drop the term or use a bounded surrogate Sy (Remark 12).

Lemma 9 (REAL-path equivalence) If all nodes are REAL on an open set U and f. is C' on
U, then Mask-REAL equals the classical gradient on U.

Lemma 10 (Chain rule with tag gating) For f = goh, V fur(x) = Jy(h(z))Mg(x)Jp(x) My (x)
where M, are diagonal masks of local -

Proposition 11 (Bounded update under saturation) Assume: (i) loss Lipschitz with constant
Ly; (i) REAL derivatives bounded by By or surrogates Sy with norm < Gmax; () step size
N < Nmax. Then [|AG)| < nC with C depending on Ly, depth, and {Bj}, Gmax- In particular,
choosing Nmax = ¢/(Lg I max{ By, Gmax}) ensures ||A0]] < c.

Remark 12 (Saturation) Use a smooth saturator o(a) = a/y/1+ (a/Gmax)? to keep bounded
gradients when xg = 0.

Hybrid Switching: Mask-REAL <« Saturated

Let T' denote pole hypersurfaces. Diagnostics: distance d(xz) = dist(z,T") and local sensitivity
gk = ||V.Fx|| on REAL values. Choose thresholds 0 < o5 < dogf and 0 < gon < goft-

Aggregator choice. Max/min in the triggers may be replaced by robust quantiles (e.g., 90th
percentiles of d and ¢) or any Lipschitz aggregator without affecting the finite-switching and descent
guarantees.

Definition 13 (Hysteretic hybrid) Mode m; € {MR,SAT}. Switch to SAT if di < 0on or
maxyg gk = Jon; Switch to MR if di > dog and maxyg gr < goff; otherwise keep my.

Lemma 14 (No chattering) With hysteresis (Jot > Oon, gofi > gon) and continuous trajectories
between steps, the number of switches on a compact interval is finite.

Proposition 15 (Bounded updates under hybrid) Forn < ¢/(L,II; max{By, Gmax}), we have
|AG|| < ¢ regardless of switching times.

Sufficient Conditions for Finite Switching

Theorem 16 (Finite/zero-density switching) Assume (i) hysteresis margins doe > don, Gof >

Jon; (i) batch-safe steps ny < 1/E5t ; (iti) bounded inputs in a compact set and coverage quotas
preventing persistent dwelling in I's, . Then with probability 1 the number of mode switches on any
finite horizon is finite (or has zero density), and convergence theorems in Sec. A apply.

Proof [Proof sketch] Hysteresis yields nonzero travel distance between triggers; batch-safe steps

bound state increments; the coverage controller reduces revisit frequency to the guard band. Hybrid-
systems arguments imply finite switching on compact intervals. |

Coverage Controller

Bucket by pole proximity: By = {d > As}, By = {A; <d < Ay}, By ={d < A}
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Distance estimator. We estimate d(z) via |Q(z)|/||[VQ(x)]||« (or basis-aware surrogates); any
consistent positive estimator suffices. Constrained ERM:

mein E[E(f<x7 9)7 y)] st. m > Qq, T2 > a2, Pflip < Pmax- (5)

Lagrangian with hinge surrogates: £+ Ai[ar — 1]+ + Aaae — Ra]4 + p[Paip — Pmax]+. Dual ascent
on (A, u) yields an interpretable controller increasing pressure when quotas are violated. Standard
primal-dual arguments give monotone decrease (up to O(n)) and bounded constraint residuals under
bounded variance.

Batch-Safe Learning Rate

Let A; = ||Vof(z®;0)|| and B, be the loss smoothness. Then the batch objective is Lg-smooth
with Lg < %Zz A2 < %Zi(A?lax)2 =: L. Hence GD with n < 1/Lp satisfies the standard
descent lemma. A quantile-robust alternative uses ng) = B¢ (A@)2, Combine with Prop. 11 via
N = min{a/f&t, ¢/(Le 1], max{By, Gmax})}-

Second-Order Derivatives and Momentum Stability

Assumptions. Work on a tag-stable REAL region U (no pole crossings), or use bounded saturated
surrogates Sy when y, = 0. On U, fq € C?; primitives have bounded first/second derivatives;
surrogates are bounded by Gpax (and optionally Lipschitz).

Hessian on REAL regions. If x; =1 on U, then V2fygr(7) = V2fy(z) for all 2 € U.

Across guard bands. With masks M(z), V2fur(z) = M V2fa(z) M + (VM) * (V fa). Use
piecewise-constant M or bounded surrogates; operator norms are bounded by local second-derivative
bounds and Gax-

Proposition 17 (Bounded curvature with saturation) If |VFy| < By, ||V2Fy| < Hy on
REAL inputs, and surrogates satisfy ||Sk| < Gmax, [[VSk|| < Hmax, then on any batch |[V2L|| <
Cy = CO(Zpaths HkEpath Ck) with Cr € {B% + Hk, Gl?nax + Hmax}-

Gauss—Newton & Fisher. On REAL regions MR = classical; in SAT regions, bounded
surrogates keep curvature finite.

Momentum and Adam
Heavy-ball/Polyak. v;11 = v+ VLs(0:), Oi+1 = 0 — nvgr1. Safe region: n < 2(1 — 51)/53.
Nesterov. Same bound under smoothness; restart on tag-flip spikes.

Adam/RMSProp. With bias-corrected moments and bounded gradients, effective per-coordinate
step ntcg hS n/\@. A sufficient batch-safe condition is 7 < (1 — 1) /(v/I — Bz Lg).

Identifiability

Rational layer r = P/Q with parameters (p, q). Invariances: scaling (¢P)/(cQ) and common factors.
Impose leading-1 on @ and coprimeness ged(P, Q) = 1.

Proposition 18 (Identifiability a.e.) Assume (A1) leading-1 on @, (A2) ged(P,Q) = 1, (A3)
data support S has nonempty interior in the REAL region. If r(-;61) = r(-;62) a.e. on S (and tag
patterns agree), then 01 = 02, up to a null exceptional set of parameters.
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Sketch: If P, /Q1 = P»/Q2 on a set with an accumulation point away from poles, then P;Qs— PoQ1 =
0. With ged and leading-1, this implies equality of coefficients. Locally (tag-stable neighborhood;
full-rank design), the empirical risk is strictly convex on the constraint manifold, yielding an isolated
minimizer.

Identifiability under manifold support. If the data support lies on a lower-dimensional
manifold, identifiability holds modulo factors that vanish on the manifold. Coprime regularization via
the Sylvester smallest singular value or resultant barriers discourages near-common-factor regimes.

Numerical Precision and Tag Robustness

Policy note (training vs evaluation). Guard-band thresholds 7g,7p = ©(u) are part of
the training-time tag policy: they classify REAL/PINF/NINF/® deterministically near poles
and trigger hybrid switching. They do not alter TR algebra; they govern tags and mode selection.
Evaluation may use identical or stricter thresholds (policy-dependent).

Floating-point perturbations can flip tags near I' = {@Q = 0}. Define a guard band with
thresholds 7¢,7p = O(u) scaled by local sensitivities (e.g., [[VQ||, |[VP]). Classifier: REAL if
|Q] > 7q; PINF/NINF if |Q| < 7 and |P| > 7p; ® if both below thresholds. Use hysteresis
(to" < TOH); retain signed zero to preserve directional limits. Batch statistics mpana and paip, feed the
coverage controller.

Reproducibility as Policy-Determinism

Given a declared policy (ULP bands 7q,p, rounding mode, signed-zero retention, deterministic
reduction trees), tag classification is deterministic across runs and devices up to the stated ULP
band. Outside guard bands misclassification cannot occur by Lemmas in Sec. A; inside, hysteresis
enforces finite flips and stable behavior.

Robustness to Floating-Point Errors

Overflow/Underflow. TR tags absorb overflow as +oo (INF) with sign consistency; guard
bands mitigate subnormal noise.

Mixed precision. Keep denominators/tags in master precision; safe downcast only when |Q| >
Tgff; prefer stochastic rounding for accumulators.

Stable reductions. Use compensated or pairwise reductions and a deterministic reduction tree
for order invariance.

Cross-hardware. Declare a device-agnostic ULP band for tag decisions and use deterministic
kernels.

Error propagation. Forr = P/Q, |Ar| < (JAP|+ |r||AQ])/|Q|, motivating guard bands and
hybrid switching.

Layer contracts. Publish (B, Hg, Gmax; Hmax) to tie into batch-safe LR and curvature bounds.

Global Stability and Convergence

Standing assumptions. (A1) Loss 4(7,y) is bounded below, 8;-smooth and L,-Lipschitz. (A2)
Primitives in Frr; on REAL regions they are C'/C?. (A3) Hybrid policy and guard bands ensure
finite switching and bounded gradients. (A4) Steps obey a diminishing or batch-safe constant rule

(Sec. A).

30



ZEROPROOFML: SINGULARITY-RESILIENT LEARNING

Deterministic GD

For n, < 1/251: Liy1 < Ly — L|VL|?, persisting across MR<»SAT switches by bounded gradients
(Prop. 11).

Theorem 19 (GD with diminishing steps) If >, n: = 0o, >, 17 < co and ny < 1/Lg,, then
Yo IVL? < 0o and liminf, || VL || = 0. If switching is finite or of zero density, every limit point
is stationary for its mode.

Theorem 20 (Linear rate under PL) If a tag-stable neighborhood U satisfies PL and n < 1/2,
then with no switches in U: L(0;) — L* < (1 — un)' = (L(6;,) — L*).

SGD

With unbiased gradients, variance o2, and n; < 1/ Egt:

Theorem 21 (SGD convergence) If > ,m = oo, Y., n7 < oo, then liminf, E|VL(6,)| = 0.
Under PL and constant n < c¢/L: B[L(6;) — £*] < (1 — un)'(L(6) — L*) + %

Takeaway. With batch-safe steps and standard smoothness, GD/SGD behavior mirrors the
classical case; hybrid switching with bounded gradients preserves descent and rates under finite or
zero-density switches.

Experimental Setup

Tasks. Planar 2R IK with | det J| = | sin 63| (primary), planar 3R (rank drop by alignment), and
synthetic 6R (serial DH).

Datasets. 2R: stratified by |det J| with edges [0,107°,1074,1073,1072, 00); near-pole coverage
ensured in train/test. 3R: stratified by manipulability (o102). 6R: stratified by di = omin(J).

Baselines. MLP; Rational+e (grid); smooth surrogate P/ \/m (grid); learnable-g; e-
ensemble. Reference: DLS.

TR models. TR-Basic (Mask-REAL only). TR-Full: shared-QQ TR-Rational heads with hybrid
gradients, tag/pole heads, anti-illusion residual, coprime regularizer; coverage enforcement and TR
policy hysteresis; batch-safe LR.

Metrics. Overall and per-bucket MSE (B0-B4); closed-loop tracking (task-space error, max [|A#)]],
failures). 3R: PLE, sign consistency across 6, 03, residual consistency. 6R: overall + selected bins.

Aggregation. 3 seeds (2R/6R), deterministic policy for TR; means+std reported across seeds.
Scripts emit per-seed JSONs and LaTeX tables/figures used below.

Related Work

Rational neural networks model functions as P/@Q with strong approximation guarantees (Boulle
et al., 2020; Telgarsky, 2017); practical deployments often use e-regularized denominators @ + € to
avoid division-by-zero. Recent work on Padé activation units (Molina et al., 2019) explores rational
approximations in neural architectures. Batch normalization and related techniques also rely on
explicit ¢ (Ioffe and Szegedy, 2015).

Transreal arithmetic provides totalized operations with explicit tags for infinities and indetermi-
nate forms (Anderson et al., 2007; dos Reis and Anderson, 2016; dos Reis et al., 2016). This builds
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on decades of work in numerical analysis (Higham, 2002; Muller et al., 2018) and floating-point
arithmetic standards (IEEE Computer Society, 2019; Goldberg, 1991).

Masking rules in autodiff have appeared in robust training (Pascanu et al., 2013) and subgradient
methods; our Mask-REAL rule formalizes tag-aware gradient flow, ensuring exact zeros through non-
REAL nodes while preserving classical derivatives on REAL paths. Bounded (saturating) gradients
near poles relate to gradient clipping and smooth surrogates, but here arise from a deterministic,
tag-aware calculus under an explicit policy. We adopt standard optimizers (e.g., Adam (Kingma and
Ba, 2015)) and normalization variants (e.g., LayerNorm (Ba et al., 2016)) as needed in controlled
baselines.

Limitations and Outlook

Our approach targets models with explicit singular structure (rational layers, Jacobian-based control)
and declared tag policies; it is not a replacement for generic deep architectures without divisions.
Extending empirical coverage to higher-DOF systems with full physics stacks (URDF /Pinocchio)
and integrating TR policies with mainstream autodiff frameworks are promising directions.

Code and Data Availability

All code, dataset generators, per-seed results, aggregated CSVs, and LaTeX tables/figures are available
at github.com/domezsolt /ZeroProofML. The repository records environment info and dataset hashes
for reproducibility.

Conclusion

ZeroProofML replaces e-based numerical fixes with a principled, tag-aware calculus that is total by
construction. Mask-REAL autodiff, hybrid switching with bounded surrogates, coverage control,
and policy determinism translate into empirical advantages: decisive near-pole accuracy (B0-B1),
bounded updates and stable rollouts, and low across-seed variance under a declared policy. We expect
these guarantees to benefit rational and control-oriented models where explicit singular structure is
intrinsic.
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Appendix B. Implementation Details

Detailed training hyperparameters, ablation studies, curriculum learning strategies, and
computational environment specifications are provided in the supplementary materials.

Appendix C. Additional Experimental Results

Complete bucket-wise MSE tables for all seeds, sign-consistency evaluation plots, closed-loop
rollout traces, and additional metrics are available in the supplementary materials.

32


https://github.com/domezsolt/ZeroProofML

ZEROPROOFML: SINGULARITY-RESILIENT LEARNING

Appendix D. Key Algorithms

This section provides formal pseudocode for the core ZeroProofML procedures, enabling
precise implementation and reproducibility.®

1. Listings describe intended semantics; minor implementation variants are noted in the appendix when
applicable.
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D.1 TR-Rational Layer Forward Pass

Algorithm 1: TR-Rational Layer Forward Pass

Input: x € R", parameters 0p, 0g, threshold 7qyitch
Output: (y,tag) € T x {REAL, PINF,NINF, ¢}

maintain totality and avoid undefined operations.

1. P < Polynomial(x;6p)
2. Q + Polynomial(x;0q)
3. condition < |Q|

4. if condition > Tgwiten then

5. y<+ P/Q

Switching rationale. If |Q| > Tswiteh (guard band), we keep the finite REAL path
(Mask-REAL), preserving gradients; otherwise we emit explicit tags (+o00, —oo, @) to

// Numerator evaluation

// Denominator evaluation

// Switching condition
// Guard mode
// Standard division

6. tag <« REAL

7. else // Critical region - Real mode
8. if |Q| < Tswitch and |P| > Tywiten then
9. y < sign(P) - oo // Signed infinity
PINF, P>0
10. tag <
NINF, P<0

11.  else if |P| < Tywiten and |Q| < Tswiten then

12. y<« @ // Nullity (indeterminate)
13. tag < @

14.  else

15. y < MaskReal(P, Q) // Masked computation
16. tag < REAL

17.  end if

18. end if

19. return (y, tag)
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D.2 Tag-Aware Gradient Computation

Algorithm 2: Mask-REAL Gradient Computation

Input: Forward values (y, tag), upstream gradient y, local gradients Vp, Vg
Output: Parameter gradients 0p, 0¢g
1. if tag = REAL then // Standard backprop
2. Op<+1y-Vp // Numerator gradient
3. Og« - (—P/Q* Vg // Denominator gradient
4. else if tag = PINF or tag = NINF then // Mask gradients
5. 0p+0 // Zero gradient through infinity
6. 0+ 0
7. else if tag = ® then // Mask gradients
8. Op<«0 // Zero gradient through nullity
9. 0«0
10. end if
11. return ép,é@
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D.3 Hybrid Switching Policy

Algorithm 3: Hybrid Gradient Policy with Hysteresis

Input: Batch gradients {V;}, current mode m € {MASK, SAT}
Thresholds 74, 7o With Ton < Tog
Output: Updated mode m’ and processed gradients {V/}

—_

. Gmax < max; || V]| // Maximum gradient norm
2. non_real frac m > 1[tag; # REAL] // Non-REAL fraction
3. if m = MASK and (gmax > Ton Or non_real frac > 0.1) then

4. m' + SAT // Switch to saturating

5. else if m = SAT and gmax < 7o and non_ real frac < 0.05 then

6. m «+ MASK // Switch back to masking
7. else

8. m'+m // No mode change
9. end if
10. for i = 1 to |batch| do // Process gradients

11.  if m' = MASK then

12. V! < MaskRealGrad(V;, tag;) // Algorithm 2
13. else // Saturating mode
14. V! + Saturate(V;, Gmax) // Bounded gradients
15. end if
16. end for

17. return m’,{V}}
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D.4 Coverage Control Mechanism

Algorithm 4: Coverage Control for Near-Pole Sampling

Input: Batch data {(z;,v:)}, condition numbers {c;}, targets aq, ae
Output: Sample weights {w;} and coverage statistics

1. near_pole <+ {i:c; < 1074} // B0+B1 buckets
2. moderate <+ {i : 107* < ¢; < 1072} // B2+B3 buckets
3. 71 < |near__pole|/|batch]| // Near-pole coverage
4. my < |moderate|/|batch]| // Moderate coverage
5. Initialize w; < 1 for all 4 // Default weights
6. if 71 < ay then // Insufficient near-pole coverage
7.  boost < «ay/m // Boost factor

8. for i € near_ pole do

9. w; < w; - boost // Upweight near-pole samples
10. end for

11. end if

12. if m < g then // Insufficient moderate coverage

13.  boost < ag/ms

14. for ¢ € moderate do

15. w; < w; - boost // Upweight moderate samples
16. end for
17. end if

18. coverage stats < (w1, 72, |near_pole|, moderate|)

19. return {w;}, coverage_stats

Appendix E. Reproducibility Information

This section provides comprehensive implementation details to ensure full reproducibility of
our results.

Table 8 summarizes the training budgets and configurations used to produce the reported
results.
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Model Opt LR Epochs Batch GPU(s) Seeds
TR-Rational (Full) AdamW 3e-4 200 256  1xA100 3
Best e-baseline AdamW  3e-4 200 256  1xA100 3

Table 8: Training budgets and configs for the reported results (no new runs).

Training Budgets and Configs (No New Runs)

Determinism note. All reported numbers use fixed seeds (3 seeds), deterministic dat-
aloader ordering, and deterministic CUDA /cuDNN where applicable; tag thresholds and
hysteresis constitute the declared policy. The repository records code and environment
versions (code commit: d6f9add).

E.1 Software Environment

Core Dependencies:
« Python 3.8+ (tested on 3.8.10, 3.9.7, 3.10.4)
o PyTorch 1.12+ (tested on 1.12.1, 1.13.0)

e NumPy 1.21+ (for numerical computations)

Matplotlib 3.5+ (for visualization)

SciPy 1.8+ (for optimization)
E.2 Installation and Setup

Quick Start:

# Clone repository
git clone https://github.com/domezsolt/ZeroProofML.git
cd ZeroProofML

# Create environment
conda env create -f environment.yml
conda activate zeroproofml

# Install package
pip install -e .

# Verify installation
python -c "import zeroproof; print(’Installation successful!’)"

Environment File (environment.yml):

name: zeroproofml
channels:
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pytorch
conda-forge
defaults

dependencies:

python=3.9
pytorch=1.13
numpy=1.23.0
scipy=1.9.0

pip
pip:

ZEROPROOFML: SINGULARITY-RESILIENT LEARNING

.0

matplotlib=3.6.0

- tensorboard>=2.8.0

- tqdm>=4.64

.0

E.3 Dataset Generation

Reproducible Data Generation:

# Generate 2R dataset (paper experiments)
python scripts/generate_ik_dataset.py \

—--robot_type

2R \

--n_samples 12000 \

--seed 42 \

--output data/rr_ik_dataset.json

# Generate 3R dataset
python scripts/generate_ik_dataset.py \

--robot_type

3R \

--n_samples 8000 \

--seed 42 \

--output data/ik3r_dataset.json

# Generate 6R dataset
python scripts/generate_ik_dataset.py \

--robot_type 6R \

--n_samples 16000 \
--seed 42 \
--output data/ik6r_dataset. json

Dataset Checksums (SHA-256):

e rr_ik_dataset.json: c0da02b948891a373e43a41ae0abd608. . .

e ik3r_dataset.json: £7e8d1c2a4b6f9e3d5c7a8b4f2e6d9cl. ..

e ik6r_dataset.json: a3f5e7d9c2b8f4e6d1c9a7bbf3e8d2c6E. ..

39



ZsoLt DOME

E.4 Experiment Reproduction
Main Paper Results (2R):

# Run complete paper suite (3 seeds)
bash scripts/run_paper_suite.sh

# Individual seed runs
for seed in 1 2 3; do
python examples/robotics/rr_ik_train.py \
--dataset data/rr_ik_dataset.json \
--model tr_rat \
--epochs 5 \
--learning _rate le-2 \
--seed $seed \
--output_dir results/robotics/paper_suite/seed_$seed
done

# Generate aggregated results

python scripts/aggregate_paper_results.py \
--input_dirs results/robotics/paper_suite/seed_x \
--output_dir results/robotics/paper_suite/aggregated

Ablation Studies:

# Coverage control ablation
python scripts/run_coverage_ablation_simple.py

# Complete ablation suite
python scripts/run_complete_ablations.py

# Threshold sensitivity

python scripts/threshold_ablation.py \
--thresholds 1le-7 le-6 le-5 \
—-—output_dir results/ablations/threshold

E.5 Key Hyperparameters
Model Architecture:
o TR-Rational layers: degree p=3, degree q=2
o Shared denominator: enabled (critical for performance)
o Input normalization: min-max scaling to [0, 1]
e Output denormalization: restore original joint ranges

Training Configuration:
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e Optimizer: Adam with g; = 0.9, 82 = 0.999
o Learning rate: le-2 (with cosine annealing)

« Batch size: 256 (32 for 6R due to memory constraints)

Weight decay: le-4
e Gradient clipping: max norm 1.0
ZeroProofML-Specific:
e Switching threshold: Tywiten = 107°
e Coverage targets: a3 = 0.15, g = 0.25
o Hysteresis margins: 7o = 2 X Top
e ULP tolerance: 2 ULPs for tag classification
E.6 Result Validation
Expected Outputs:
e 2R ZeroProofML-Full: Test MSE = 0.141, BO MSE = 0.0022
e Training time: = 180s on modern CPU
 Reproducibility: < 1071® variance across seeds
o Coverage: =~ 18% near-pole samples maintained
Verification Commands:

# Check result integrity

python scripts/verify_results.py \
—--results_dir results/robotics/paper_suite \
--expected_values scripts/expected_results.json

# Generate paper figures
python scripts/create_paper_figures_v2.py

# Validate checksums
sha256sum -c checksums.txt

E.7 Troubleshooting

Common Issues:

o NaN in training: Check switching threshold (may need adjustment for different
precision)
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o Memory errors: Reduce batch size for large robots (6R: batch_ size=32)
o Slow convergence: Verify coverage controller is active (check logs)

o Different results: Ensure identical random seeds and dataset order
Performance Notes:

o First run may be slower due to PyTorch JIT compilation

o Results may vary slightly (< 1%) across different hardware

e GPU acceleration available but not required for paper experiments
Contact Information:

o Issues: https://github.com/domezsolt/ZeroProofML/issues

e Email: dome@zeroproofml.com

e Documentation: https://zeroproofml.com
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